# Cu-Fe-Mn (Copper-Iron-Manganese)

#### V. Raghavan

The review of this ternary system by [1988Ray] presented a liquidus surface and four isothermal sections at 1050, 950, 900, and 850 °C. The updates by [1994Rag] and [2002Rag] added two computed isothermal sections at 1300 and 1150 °C from the work of [1981Nis] and an experimental section at 1200 °C based on the studies of [1997Oht]. The compilation of [1995Vil] included a liquidus projection and four isothermal sections assessed by [1988Ray], eight computed isothermal sections between 1300 and 600 °C from [1978Has], four vertical sections from [1913Par] and computed isothermal sections near the Fe corner by [1989Har]. Miscibility gaps in the liquid and solid states were calculated by [2004Wan]. A thermodynamic description of the system near the Fe-Cu side was given by [2003Mie]. Recently, [2007Wan] carried out a thermodynamic assessment of this ternary system and computed nine isothermal sections, six vertical sections and a liquidus projection. The work of [2007Wan] was reviewed by [2008Rag]. Very recently, [2008Zha] carried out another detailed thermodynamic description and presented a number of computed isothermal sections, vertical sections and a liquidus projection, which were compared with the available experimental results. This update will be limited to a discussion of the similarities and differences between these two recent thermodynamic assessments.

## **Binary Systems**

There are no intermediate phases in any of the three binary subsystems. A metastable liquid miscibility gap is known in the Cu-Fe and Cu-Mn systems. Computed phase diagrams of Cu-Fe, Cu-Mn and Fe-Mn were given by [2008Zha]. Continuous face-centered cubic (fcc) solid solutions exist between  $\gamma$ Fe and  $\gamma$ Mn (denoted fcc<sub>1</sub>) and between Cu and  $\gamma$ Mn (denoted fcc<sub>2</sub>).

## **Ternary Phase Equilibria**

With starting metals of 99.999% Cu, 99.99% Fe and 99.9% Mn, [2008Zha] arc-melted under Ar atm four Fe-rich alloys containing up to 20 mass% Cu and 30 mass% Mn. The alloys were annealed at 800 °C for 30 d and quenched in water. Differential thermal analysis was carried out on the annealed samples at a heating/cooling rate of 5 °C per min. The phase equilibria were studied with optical metallography, x-ray powder diffraction and electron probe micro-analysis. The tie-lies determined between fcc<sub>2</sub> (Cu,  $\gamma$ Mn) and fcc<sub>1</sub> ( $\gamma$ Fe,  $\gamma$ Mn) or between fcc<sub>2</sub> and ( $\alpha$ Fe) were listed. Microstructural examination by [2008Zha] showed that the fcc<sub>1</sub> phase ( $\gamma$ Fe,  $\gamma$ Mn) undergoes a massive transformation

to ( $\alpha$ Fe) during quenching in alloys with Mn equal to 5 or 10 mass%. These alloys were classified as having (Cu,  $\gamma$ Mn) + ( $\gamma$ Fe,  $\gamma$ Mn) equilibrium at 800 °C. This result is at variance with that of [2007Wan], who did not consider the possible intervention of the massive transformation.



Fig. 1 Cu-Fe-Mn computed isothermal section at 1200 °C



Fig. 2 Cu-Fe-Mn computed isothermal section at 1150 °C

### Section II: Phase Diagram Evaluations



Fig. 3 Cu-Fe-Mn computed isothermal section at 950 °C



Fig. 4 Cu-Fe-Mn computed isothermal section at 800 °C

In their thermodynamic analysis, [2008Zha] used a more recent description of the Cu-Mn system by [2008He]. The liquid phase and the fcc phase (fcc<sub>1</sub> and fcc<sub>2</sub>) and the bcc phase ( $\delta$ Fe,  $\delta$ Mn, and  $\alpha$ Fe) were described as single-lattice substitutional solutions. In modeling ( $\beta$ Mn) and ( $\alpha$ Mn) phases, the solubility of Cu and Fe was considered. The magnetic contribution to the Gibbs energy was taken into account in the case of fcc, bcc and ( $\alpha$ Mn) phases. The experimental data of [1913Par], [1978Has], [1997Oht], [2001Wan] and [2008Zha] were used in the optimization. Fewer ternary interaction parameters were determined for



Fig. 5 Cu-Fe-Mn computed isotherms on the liquidus surface

the liquid, fcc and bcc phases (a total of 9 instead of 14 evaluated by [2007Wan]).

Eleven isothermal sections at 50° intervals between 1300 and 800 °C, nine vertical sections at 10, 20 and 30 mass% each of Cu, Fe and Mn and a liquidus projection were computed and compared with experimental data. The agreement with experiments is about the same between the two assessments [2007Wan] and [2008Zha]. However, there are some improved fitting seen in the description of [2008Zha]. The isothermal sections at 1200, 1150 and 950 °C, where such improvement is discernible, are shown in Fig. 1-3. The slightly-better fit is seen in the  $L/(fcc_1 + L)$ phase boundary in Fig. 1 and 2. The location of the tietriangle  $(L + fcc_1 + fcc_2)$  of [2008Zha] shows better agreement with experimental data in Fig. 3. The isothermal section at 800 °C (Fig. 4), where new data obtained by [2008Zha] were used in the optimization, shows no better agreement than [2007Wan]. This poor fit is also seen at 900 and 850 °C (not shown here). [2008Zha] attributed this discrepancy to the experimental difficulties in determining the equilibrium between (Fe) and (Cu) near the Fe-Cu side. As with the results of [2007Wan], the fit of the computed vertical sections of [2008Zha] with the experimental data of [1913Par] (not shown here) is good. Figure 5 shows the isotherms (constant-temperature contour lines) on the liquidus surface. Some improvement is discernible in the fit between the computations of [2008Zha] and the experimental data assessed by [1988Ray].

#### References

- **1913Par:** N. Parravano, Ternary Alloys of Iron-Nickel-Manganese, Nickel-Manganese-Copper, and Iron-Manganese-Copper, *Z. Metallkd.*, 1913, **4**, p 171-201, in German
- **1978Has:** M. Hasebe and T. Nishizawa, Analysis and Synthesis of Phase Diagrams of the Fe-Cr-Ni, Fe-Cu-Mn and Fe-Cu-Ni

Systems, National Bureau Standards Spl. Publ., 1978, 496, p 911-954

- **1981Nis:** T. Nishizawa and M. Hasebe, Computer Calculation of Phase Diagrams of Iron Alloys, *Tetsu-to-Hagane*, 1981, **67**(14), p 2086-2097, in Japanese
- **1988Ray:** G.V. Raynor and V.G. Rivlin, Cu-Fe-Mn, *Phase Equilibria in Iron Ternary Alloys*, Institute of Metals, London, 1988, p 345-353
- 1989Har: K.C. Hari Kumar and V. Raghavan, BCC-FCC Equilibrium in Ternary Iron Alloys—III, J. Alloy Phase Diagrams, 1989, 5(3), p 201-220
- 1994Rag: V. Raghavan, Cu-Fe-Mn (Copper-Iron-Manganese), J. Phase Equilib., 1994, 15(5), p 542
- **1995Vil:** P. Villars, A. Prince, and H. Okamoto, Cu-Fe-Mn, *Handbook of Ternary Alloy Phase Diagrams*, Vol 7, ASM International, Materials Park, OH, 1995, p 9336-9350
- 1997Oht: H. Ohtani, H. Suda, and K. Ishida, Solid/Liquid Equilibria in Fe-Cu Based Ternary Systems, *ISIJ Int.*, 1997, 37(3), p 207-216
- **2001Wan:** C.P. Wang, Ph.D. thesis, Tohoku University, Tohuku, Japan, 2001 (as quoted by [2008Zha])

- 2002Rag: V. Raghavan, Cu-Fe-Mn (Copper-Iron-Manganese), J. Phase Equilib., 2002, 23(3), p 259
- 2003Mie: J. Miettinen, Thermodynamic Description of the Cu-Fe-Mn System at the Cu-Fe Side, CALPHAD, 2003, 27(2), p 141-145
- 2004Wan: C.P. Wang, X.J. Liu, I. Ohnuma, R. Kainuma, and K. Ishida, Thermodynamic Database of the Phase Diagrams in Cu-Fe Base Ternary Systems, *J. Phase Equilib. Diffus.*, 2004, 25(4), p 320-328
- 2007Wan: C.P. Wang, X.J. Liu, I. Ohnuma, R. Kainuma, and K. Ishida, Thermodynamic Assessments of the Cu-Mn-X (X: Fe, Co) Systems, J. Alloys Compd., 2007, 438, p 129-141
- 2008He: C.Y. He, Y. Du, H.L. Chen, S.H. Liu, H.H. Xu, Y.F. Ouyang, and Z.K. Liu, Thermodynamic Modeling of the Cu-Mn System Supported by Key Experiments, *J. Alloys Compd.*, 2008, 457(1-2), p 233-238
- 2008Rag: V. Raghavan, Cu-Fe-Mn (Copper-Iron-Manganese), J. Phase Equilib. Diffus., 2008, 29(6), p 520-522
- 2008Zha: L. Zhang, Y. Du, Q. Chen, H. Xu, F. Zheng, C. Tang, and H. Chen, Thermodynamic Description of the Cu-Fe-Mn System with Key Experiments and Its Practical Applications, *Int. J. Mater. Res.*, 2008, 99(12), p 1306-1318